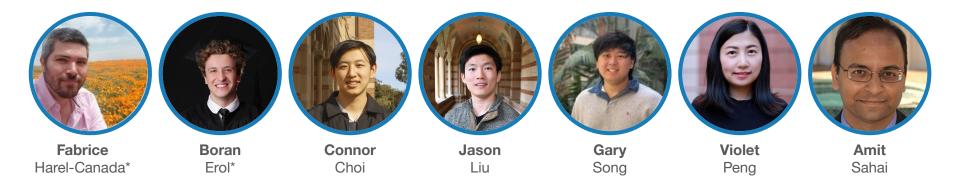


Sandcastles in the Storm: Revisiting the (Im)possibility of Strong Watermarking

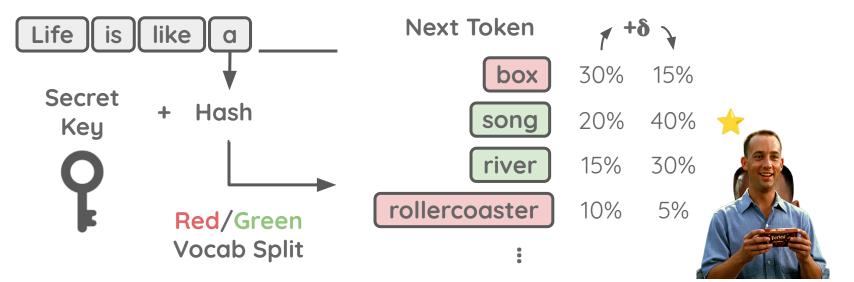


The Problem: Al as a Double-Edged Sword

- Humans have a hard time identifying Al-generated content
- While powerful, more people using AI means increased risks:
 - Academic Dishonesty: Undermining originality and effort
 - Misinformation: Spreading false narratives at scale
 - **IP Theft:** Unauthorized use of AI-generated content
- How can we reliably determine if content was AI-generated?

The Solution: Statistical Watermarking

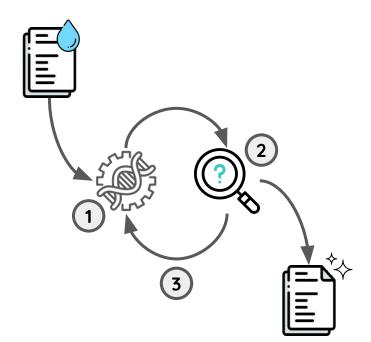
Embed hidden patterns via careful token selections that would be unlikely to occur naturally



[1] Kirchenbauer, et al., A Watermark for Large Language Models. PMLR 2024

A Theoretical Roadblock?

- Recent influential work "Watermarks in the Sand" (WITS) [1] argue that *every possible* watermark can be erased while preserving text quality.
- Proposed a universal attack formula:
 - **Step 1 (Perturb):** A Perturbation Oracle **P** make edits (e.g. paraphrases)
 - **Step 2 (Check Quality):** A Quality Oracle **Q** ensures the edit doesn't degrade quality
 - **Step 3 (Repeat):** Iterate for sufficiently long to break the watermark. Maybe 200 iterations?



[1] Zhang, Hanlin, et al. "Watermarks in the sand: Impossibility of strong watermarking for generative models." ICML (2024).

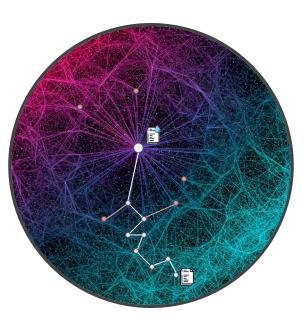
Conceptualizing the WITS Attack

Every possible response to a prompt is a point in a massive graph

- 1. P takes a step
- 2. Q checks if the new state is good enough

Stick to a quality preserving subgraph

Samueli



Random Walk Attack

Semantics can drift so long as the quality stays high!

Questioning Key Assumptions (KA)

KA1: Rapid Mixing

Transition probabilities assigned to quality-preserving edits are high

KA2: Reliable Quality Oracle

Q is near-perfect to maintain quality throughout the attack

the attack quickly converges to a **stationary distribution** *independent of the watermark*

too lenient? quality not preserved
too conservative? inefficient traversal

Question: Do these assumptions hold up in practice?

Empirical Study Setup

Large-scale empirical study across **718,160** texts **3** watermark schemes, **7** perturbation oracles, **24** quality oracles

Entropy Controlled Prompts

- Vulnerable Domains: Education, Journalism, Creative Writing
- Progressive Control: Each prompt more constrained than the last, ex:

 Lvl 1: "Write a 500-word story"
 Lvl 2: "...that takes place in Paris"
- Perturbed for *many* steps to ensure sufficient opportunity for mixing

Watermarkers

- **KGW:** Red/green list based on rolling hash of previous token IDs
- **SIR:** Uses hash based on semantic embeddings of preceding tokens
- Adaptive: Selectively boosts only high-entropy tokens

Empirical Study Setup

Large-scale empirical study across **718,160** texts **3** watermark schemes, **7** perturbation oracles, **24** quality oracles

Perturbation Oracles (P)

- **Token:** maskfill random tokens
- **Span:** maskfill contiguous tokens
- Sentence: modify a single sentence
- **Document:** full document edits in 1-step, 2-step (modify 1 sentence + global consistency check), multi-step

Quality Oracles (Q)

For original text O and perturbed P:

- **Absolute:** Q scores O / P separately
- Comparative: Q sees both O / P together, compares, then scores
 Many different configurations of oracle type and LLM base model.

NOTE: Q can be as strong as the watermarking model, but P must be weaker (else just regen with P directly)

Can stationary distributions for watermarking be reached under practical constraints?

Testing KA1: Rapid Mixing

IKWYT! Just find the 2nd-largest eigenvalue of the transition matrix, right?

No, the graph of possible responses is $massive \rightarrow computationally$ intractable

Lineage Distinguisher Test

Fact: if mixing occurs, you've reached a stationary distribution + therefore, the "memory" of starting state is *lost*

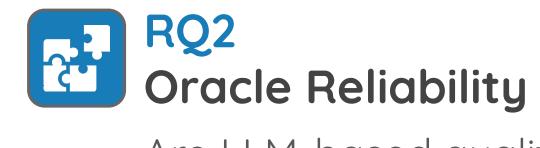
Lineage Distinguisher Tests

Perturbation Oracle	Steps	Tests	Llama-3.1-70B (Failed)	GPT-4o (Failed)	o3-mini-high (Failed)
Word	1000	720	0	0	0
EntropyWord	1000	720	0	0	0
Span	250	720	12	1	0
Sentence	150	720	38	3	0
Document	100	421	2	0	0
Document1Step	10 <mark>0</mark>	576	0	0	0
Document2Step	100	678	1	0	0
Total / Failed Tests		4555	53	4	0
Cumulative Distinguished (%)			98.84%	99.91%	100.00%

- Llama3 was a strong and affordable starting point
- Failed tests are sent to the next cheapest model
- Humans are the final boss, but LLMs are good enough

of tests can be traced back to their original parents

Rapid mixing is not happening in practice

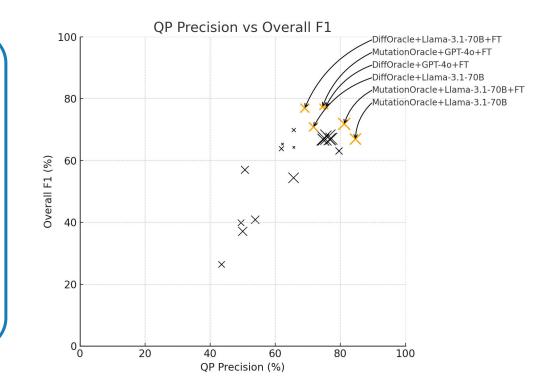


Are LLM-based quality oracles sophisticated enough to guide a random-walk attack?

Testing KA2: Oracle Reliability

- Construct a dataset of 795 original + perturbed text pairs
- 2 Humans determined whether:
 - **1.** Original better
 - 2. Perturbed better
 - Quality Preserved (QP)
 - 3. Equivalent quality _
- 3 Evaluate oracles for alignment with human judgement
 - **1.** QP Precision \rightarrow avoid approving degraded text
 - **2.** $F1 \rightarrow$ balances strictness + efficiency

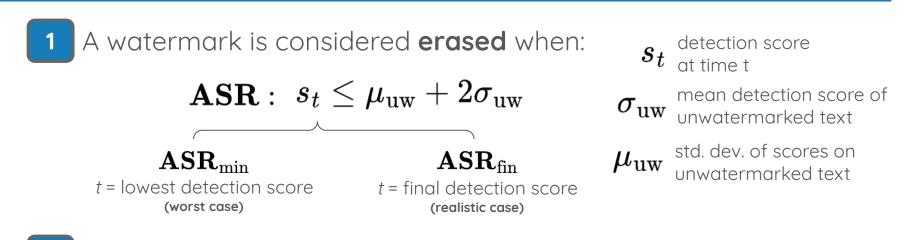
The best oracle by F1 (fine-tuned GPT-40) is expensive and only gets 77% **Compounding errors**: ~95% chance of permitting degraded text over just 10 steps



RQ3 Attack Vulnerability

How effective are random-walk attacks in breaking watermarks when controlling for quality?

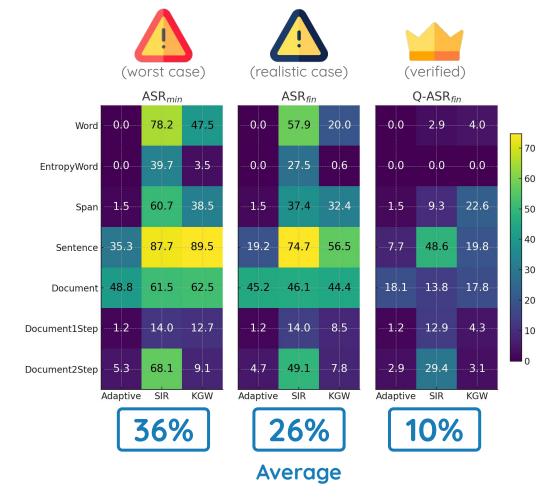
Determining Attack Success



2 **10 humans** judged quality on up to 20 successfully attacked texts per perturbation strategy and watermark

Estimate realistic attack success (**Q-ASR**) based on pass rate

3



Human quality checks decimate attack **SUCCESS:** Q-ASR ~10% (max 49%) The effectiveness of the improved WITS attack is much lower than theory predicts, particularly for Adaptive

Takeaways

Main Takeaways

A large gap exists between attack theory and practical reality

- **Slow Mixing:** Watermarks persist, requiring many more edits (and chances for quality degradation) than assumed.
- **Imperfect Oracles:** Faulty quality control limits the attack's ability to navigate towards good, unwatermarked text.

Watermarking remains a robust option for AI provenance!

