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ABSTRACT 
 

The ability to automatically summarize or caption target sequences has an extensive            
history within natural language processing (NLP) research. However, such applications to           
computer programming languages are less well studied. We propose to approach the code             
summarization problem by reframing it into a translation task. Doing so allows us to              
employ a mixture of techniques developed in the neural machine translation (NMT)            
subfield to produce concise and reasonably accurate natural language outputs for a given             
source code snippet as input. We constrain the lengths of the summaries sufficiently to              
regard them as function names and thus present our model as Code2Func. We             
demonstrate the effectiveness of our approach for the task of function name prediction             
within Java and Python. Our code, data, and trained models are available at             
https://github.com/fabriceyhc/code2func . 

INTRODUCTION 
Code captioning is the process of generating a natural language title or brief summary for a given snippet                  
of source code. Software developers regularly perform this task while familiarizing themselves with new              
code and when generating function names or documentation for their own code. In a broader sense, any                 
task that involves understanding code necessarily entails an antecedent mental captioning of its purpose              
and we view the automation of this first step as an important time-saving contribution to the development                 
process.  

Previous work in this area can be categorized into two main paradigms: models that account for the                 
differences between natural languages and programming languages [1, 2, 3, 4, 5, 6] and those that do not.                  
Most sequence-to-sequence (seq2seq) models, adopted from neural machine translation (NMT), frame the            
code captioning task as a machine translation problem and treat source code like any other natural                
language - as a sequence of tokens. Such models were not specifically designed for handling               
programming languages, but have nonetheless been able to achieve state-of-the-art results. In contrast,             
approaches that leverage the syntactic structure of programming languages in the preprocessing and             
encoding portions of their pipelines to speed up training and improve the quality of the captions.  

We present an alternative approach, Code2Func that synthesizes elements of both paradigms to generate              
code captions that are both concise and reasonably accurate. We demonstrate the effectiveness of our               
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approach on a dataset of the statically typed Java programming language [6] as well as a dataset of the                   
dynamically typed Python programming language [7].  
 
APPROACH 

Our first step in accounting for the particularities of captioning code snippets is to represent them as a set                   
of compositional paths sampled from its abstract syntax tree (AST). The root and leaves of an AST                 
usually refer to user-defined values that represent identifiers and names from the code while the internal                
nodes represent some operator of the language like for loops, if statements, and var declarations.               
The first and last node of an AST path are terminals on all such nodes to increase the degree of                    
correspondence with natural language. For example,whose values are tokenized as part of preprocessing.             
Furthermore, we recognize that many user-defined nodes employ stylized naming conventions wherein a             
small number of natural language words are concatenated to name a code variable or method. Therefore,                
we perform an additional “sub-tokenization” step the single token createNewFile would become            
three separate tokens create, new, and file .  

The next step is to embed the tokenized AST paths into a fixed-length vector. The primary goal with this                   
step is to create an informative input suitable for use with a traditional NMT model. For our study, we                   
elected to use a transformer model [8] because of its strong performance on standard machine translation                
tasks. Additionally, the transformer’s additional encoding layers provide an opportunity to learn a deeper              
representation of the AST paths. During decoding, the transformer attends over a different weighted              
average of the path embeddings to produce each output token, much like NMT models attend over token                 
representations in the input sentence.  
 
EVALUATION 

In this exploration of the subject, we focus on one particular type of captioning task known as function                  
name prediction, which we view as a special, more narrow kind of source code summarization, and is                 
generally limited to the generation of short (1-5) output tokens (English words) for a given source code                 
input. We treat this output as a prediction of a function name from its body. Quantitatively, we measure                  
the number of exact string matches between the original function name and predicted one and report the                 
accuracy accordingly. However, this metric is ultimately shallow in that a developer could reasonably              
choose many different function names and merely checking for an exact match does not preclude the                
possibility that our model discovered another reasonable name for the function. Therefore, to supplement              
the exact match accuracy metric, we used a combination of qualitative analysis on a select few examples                 
and attempt another quantitative measure of evaluating the error between the actual name and predicted               
name using the Damerau–Levenshtein distance of the plain text strings. Damerau–Levenshtein distance            
is a string metric for measuring the edit distance between two sequences. It is the minimum number of                  
operations (consisting of insertions, deletions or substitutions, or transpositions) required to change one             
sequence into the other. 

We experiment with this task across two different datasets. The first dataset was produced by Barone et                 
al. [7] and contains extracted Python 2.7 functions names and their code bodies. To facilitate comparisons                
with the original benchmarks, we used the same training/ validation/ test partitions as the original authors,                
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which consists of 109,108 training examples, 2,000 validation examples, and 2,000 test examples. The              
second dataset was produced by Alon et al. [6] and consists of 9,500 top-starred Java projects from                 
GitHub, where 9,000 projects we used for training, 250 for validation, and 300 for testing - in all ~16                   
million examples. It is important to note that all inference is performed on code from projects not                 
included in the training or validation sets to minimize the possibility of “leakage” between sets.  
 
RESULTS 
 
Our model scored an exact match accuracy of 12.3% in the Java dataset and 1.2% in the Python dataset. 
Further, we obtain the Damerau–Levenshtein distance vs number of test samples graph for both Java and 
Python datasets. In absolute counts, approximately 3,800 test samples have been predicted accurately (all 
string tokens match) in the Java dataset and 9 samples have been predicted correctly in the Python dataset. 

 
Figure 3. Graphs showing the Damerau–Levenshtein distance for Java (left) and Python (right).  

 

Tokenized Java AST True Predicted  

Override Nm0 MarkerExpr Mth Prim1 longoverride Nm0 

MarkerExpr Mth Nm2 METHOD_NAMElong Prim1 Mth Nm2 

METHOD_NAMElong Prim1 Mth Bk Ret Nm0 

timestampMETHOD_NAME Nm2 Mth Bk Ret Nm0  

get 

timestamp 

get 

timestamp 

Table 1. Example of a tokenized Java AST and the true / predicted function names.  
 

Tokenized Python AST True  Predicted 

key module body functiondef name bucket args 

arguments args name id things ctx param name id key 

ctx param vararg... ret ctx load decorator list  

bucket bucket 

name 

Table 2. Example of a tokenized Python AST and the true / predicted function names.  
 
We observe that our Code2Func method performs a good job in predicting the function names for the 
Java dataset with the majority of the samples having  Damerau– Levenshtein distance of two or fewer. Its 
performance is less impressive with the Python dataset and we believe this is for two reasons. First, the 
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training set is significantly smaller than the Java dataset and NMT models like the transformer require 
extremely large training corpora. This could be rectified by increasing the size of the Python dataset. The 
second reason is that Python is a dynamically typed language, which obscures the types in our static 
analysis environment and provided less information to the model. 
 
When considering the exact name matching metric, our model’s accuracy may seem very poor on the first 
pass. However, in a normal classification task, the baseline accuracy of random guessing is defined as 

 where  is the number of possible classification labels and  is the number of output tokens. In/C1 n C n  
our case,  is the set of all words in the English language, or at least the training set vocabulary tailoredC  
for some specific task, and is usually in the thousands if not tens of thousands. So our model achieves an 
accuracy of 12.3% in the Java dataset and 1.2% in the Python dataset actually performs much better than 
random guessing of function names. Ultimately, this metric is a shallow one to use because it doesn’t 
account for the semantic similarity between words. It is quite possible to not get a match but to still have 
output a useful function name. So in addition to the quantitative metrics, we performed an admittedly 
small scale analysis of the predicted function names and both the input and the true method name. We 
find that in many cases, the model does predict a function name which is a close match to the true 
function name. As an example, ‘bucket_name’ was the predicted function name for the actual function 
called ‘bucket’ as seen in Table 2. We believe this should be considered a reasonable output.  
 
DISCUSSION 
 
One major goal of this effort that unfortunately did not materialize in time was the incorporation of BERT                  
[9] to obtain contextual embeddings of the code before feeding it to the transformer model. To our                 
knowledge, no other research has produced a contextualized word embedding for a programming             
language. Ultimately, we failed to produce a working BERT embedding due to the massive vocabulary of                
code tokens (>273k) and a lack of sufficient computing power. In future work, we will investigate                
different methods to tokenize code which can help in reducing the vocabulary size thereby making it                
easier to train contextual embeddings for different coding languages. We also plan to reduce the verbosity                
of the AST encoded functions and extract only the contents of the tree nodes, effectively stripping out the                  
metadata tags added by the library, which likely contributed unnecessary noise to the inputs in our                
experiments.  
 
CONCLUSION 
 
In this paper, we formulate the code captioning problem as an NMT task and propose a method to                  
automatically name functions in different programming languages. We construct the Code2Func model            
generates a function name given the code defining the function. We explain in detail the data                
preprocessing methods to convert the raw code to AST and feeding it to the Transformer model to make                  
the predictions. Finally, we do a comprehensive evaluation of Code2Func using Java and Python datasets.               
Our results indicate that given large volumes of training data, we can generate function names given the                 
code with considerable accuracy. Code2Func shows degradation in performance for Python dataset but             
we discussed solutions on how the performance can be improved further.   
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